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Abstract

The Poly‐ and perflouroalkyl substances (PFAS) experts Symposium 2, held virtually

from June 29 to July 1, 2021, brought together experts from a wide range of

disciplines to discuss recent advances and current thinking regarding PFAS in the

environment. Within the general areas of characterization and fate and transport,

three topics were identified that are of relevance for site assessment and re-

mediation, and for which our understanding has greatly expanded or evolved since

the first PFAS Experts Symposium in 2019: the significance of background PFAS

sources to the environment, the relevance and use of nonselective analytes in site

characterization, and PFAS retention in soil and the vadose zone. PFAS have been

identified in shallow soil nearly worldwide, including far from known or suspected

PFAS sources, and PFAS detected in soil and groundwater at sites under environ-

mental investigation may not reflect on‐site sources. New advances in nonselective

preparation and analytical methods offer promise for more rapid site screening and

for assessing the presence and relative concentration of nontargeted PFAS. We also

now recognize that a wide range of soil characteristics and processes may affect

PFAS sorption and desorption from soil, and ultimately influence PFAS mobility and

concentration in groundwater and surface water.
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1 | INTRODUCTION

This paper was developed as an outcome from presentations by the

Characterization, Fate, and Transport group given as part of the

poly‐ and perfluoroalkyl (PFAS) Experts Symposium 2 (Symposium),

a virtual, invitation‐only conference held from June 29 to July 1,

2021. The Symposium was a follow‐up to a previous PFAS Experts

Symposium held in May 2019 (Simon et al., 2019). The primary

objective of the Symposium was to share current and emerging

information and thinking regarding per‐ and polyfluoroalkyl sub-

stances (PFAS) among experts representing a wide range of dif-

ferent scientific and technical fields, and to serve as an update to
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ideas and concepts first developed in the 2019 Symposium. Each of

the listed authors participated in the Symposium and contributed to

the discussions and presentations.

Our understanding of the sources, fate, and transport of PFAS

in the environment is rapidly evolving and is of critical interest for

risk assessment, remediation, regulation, and liability. Within the

general areas of characterization, fate, and transport, the Sympo-

sium organizers and participants identified three topics of particular

interest for which our understanding has greatly expanded or

evolved significantly since the 2019 Symposium. These include

significance and magnitude of off‐site (or background) PFAS sour-

ces, the relevance and use of nonselective preparation and analy-

tical methods in PFAS site characterization and fate and transport

assessment, and retention of PFAS in source areas. The purpose of

this paper is to summarize the relevance of each issue, evaluate

critical uncertainties, and offer recommendations for practitioners

and for future research.

2 | RURAL, SUBURBAN AND URBAN
BACKGROUND, AND NONSITE RELATED
SOURCES

PFAS have been manufactured since the 1950s and, after decades of

use in a vast number of industrial, commercial, and household pro-

ducts, PFAS are widely distributed in the environment today. Com-

monly recognized primary sources to the environment include

facilities where PFAS have been synthesized; manufacturing facilities

were PFAS have been used for production of personal, commercial,

and/or industrial products (e.g., cosmetics, fabric coatings, and mist

suppressants for chromium electroplating); and fire training or acci-

dent response areas where aqueous film forming foam (AFFF) was

utilized for fire suppression. Potential secondary sources of PFAS to

the environment include waste management units such as landfills

and wastewater treatment plants that have historically received

PFAS‐bearing wastes; land application of biosolids, landfill leachate,

and wastewater treatment plant effluent; stormwater runoff (Page

et al., 2019); and deposition from upwind atmospheric releases from

industrial facilities that use or manufacture PFAS (Schroeder et al.,

2021). Less obvious sources include rainwater contaminated by at-

mospheric releases; aerial spraying of pesticides impacted by PFAS

associated with chemical storage containers; and residential septic

discharges of PFAS associated with consumer products. Due to the

long history and wide variety of use, disposal practices, and transport

mechanisms, PFAS detected in environmental media at a particular

site may not be related to on‐site activities. Determining if PFAS are

site‐related or not is a key issue because site owners and responsible

parties may not be liable for PFAS from background or off‐site

sources. This is particularly relevant for management of sites at which

PFAS use or release are not suspected, there are other known or

suspected local or regional PFAS sources that are not site‐related,

and/or the site is located in an area with a recognized regional sur-

face water and/or groundwater PFAS background.

2.1 | What is background for PFAS?

PFAS are commonly regulated at concentrations in the range of tens

of nanograms per liter (or parts per trillion) in drinking water and in

groundwater. In some cases, regulatory agencies have proposed goals

and standards that are far lower (e.g., California Environmental

Protection Agency Pesticide and Environmental Toxicology Branch

Office of Environmental Health Hazard Assessment, 2021). Due to

these low‐regulatory thresholds and associated analytical quantita-

tion levels and their widespread distribution in the environment,

detection of PFAS in environmental media such as soil and ground-

water is relatively common even far from known or potential sources.

Complete “nondetects” are possible but are often atypical.

Brusseau et al. (2020) compiled soil PFAS data from published

surveys from approximately 2500 sites around the world, including

urban and rural sites representing background, primary source sites,

and secondary source sites. PFAS concentrations at sites considered

to represent background were generally orders of magnitude lower

than at primary and secondary source sites; however, PFAS were

detected in soil at almost every site tested, even in remote regions far

from potential PFAS sources. Detected concentrations of PFAS in soil

do not necessarily result in detectable concentrations in groundwater

at all sites; corresponding concentrations in groundwater are gen-

erally far lower than in soil, with considerable variability correlated to

soil characteristics (Anderson et al., 2019). However, stormwater,

surface water, and groundwater in urban and some rural areas far

from known sources have yielded detectable PFAS concentrations

(e.g., Bai & Son, 2021; Goodrow et al., 2020; Vedagiri et al., 2018). As

a result of the many possible but commonly unknown sources of

PFAS in the environment, there is often an “urban background”

concentration of PFAS present in soil and shallow groundwater that

may exceed regulatory thresholds but is not related to an on‐site

source.

2.2 | Site setting considerations

A challenge in PFAS site investigation is to differentiate site‐related

PFAS from off‐site (or background) sources of PFAS. That is, were

PFAS released at the site of interest, and if so, what is the relative

contribution of impacts from the site relative to background and off‐

site sources? This differentiation starts by developing a conceptual

site model (CSM) for PFAS that incorporates evaluation of potential

background and off‐site sources, followed by data collection, eva-

luation, and synthesis with a refined CSM to verify the nature and

extent of PFAS due to on‐site activities. If PFAS detected at a site are

determined to be site‐related, then the sampling results should be

sufficient to support risk assessment and evaluation of remedial

alternatives. More specific considerations are described below.

Site setting is an important consideration for sampling design at

scales ranging from the site, adjacent properties, and region. On‐site

PFAS source assessment may be straightforward for primary source

areas such as AFFF discharge locations and manufacturing plants

2 | COMMENTARY



where PFAS have been used, secondary source areas such as landfills,

areas where biosolids have been applied, and where irrigation has

occurred using known impacted surface water or groundwater

(Brusseau et al., 2020; Eggen et al., 2010; Lindstrom et al., 2011).

Source assessment is more difficult at sites where PFAS were not

known to be utilized in operations, or where PFAS sources may in-

clude short‐ and long‐range transport of PFAS from off‐site sources

via atmospheric deposition or stormwater runoff (Galloway et al.,

2020; Xiao et al., 2012). For example, an urban area may have nearby

industrial sources; a suburban area may have nearby landfills; and a

rural area could have used biosolids or have active or abandoned

septic systems, all of which may contribute to PFAS background at a

specific site of interest. Thus, evaluation of PFAS sources should

extend well beyond the fence line and include characterization of

regional groundwater and surface water flow patterns and prevailing

wind direction. Identification of known PFAS sources upwind and/or

upgradient of a site (potentially available through state agency da-

tabases), review of local newspapers (which may discuss other

sources in the vicinity of a project site), consideration of prevailing

wind directions, and an understanding of area and region‐specific

hydrogeology and hydrology should factor into the evaluation

(Shimizu et al., 2021). PFAS concentrations at nearby sites should be

considered based on proximity and orientation relative to air and

water flow directions (e.g., upgradient, local, and downgradient),

when those data are available. PFAS are known to leach from soil to

surface water and groundwater, thus a multi‐media analysis may be

appropriate.

2.3 | Considerations and recommendations for
collection of background samples

The following considerations and recommendations are offered to

evaluate the presence and quantify the potential contribution of

background PFAS at a site.

• Analyze as many individual PFAS as possible, rather than restrict

the targeted compounds only to those that are regulated at the

time of the investigation. Commercial laboratories can currently

quantify about 75 PFAS in a variety of environmental matrices,

however in some cases, samples are only analyzed for a short list

of specifically regulated compounds. The diversity of PFAS and the

presence of different structural isomers (i.e., linear and branched

isomers) provide opportunities to potentially differentiate off‐site

and on‐site sources. Additional analytes may also become critical

in the future as the number of regulated PFAS constituents

evolves over time.

• Consider the need to identify or quantify precursors, including

nontargeted analytes. Many nontargeted PFAS may partially

transform in the environment, resulting in relative PFAS compo-

sitions that evolve during transport to a downgradient receptor.

• Consider future property access availability and resampling costs.

Access in some instances may be a one‐time event, thus it is

important to determine all the data needed before negotiating

access. This can be particularly important in a litigation context, in

which obtaining all the relevant data in a timely manner is crucial

and having data from multiple environmental media (e.g., soil,

surface water, and groundwater) may be important.

• Consider a tiered approach to data analysis. A first step may be to

evaluate the relative concentrations of specific PFAS among different

samples, for example, using graphical approaches and/or multivariate

statistical methods such as principal components analysis.

• Consider that data needs for evaluation of potential background

sources may differ from data needs commonly utilized for risk

assessment. Brusseau et al. (2020) demonstrated that PFAS con-

centrations often exhibit exponential decreases with sample depth

below the surface and exhibit differential sorption of long‐chain

versus short‐chain PFAS, due to a variety of factors including

PFAS source properties (e.g., PFAS type, source input conditions,

and co‐contaminants), soil properties, and meteorological condi-

tions. Evaluation of potential background sources such as atmo-

spheric deposition should focus on shallow surface soils (e.g., from

0 to 3 inches or 0 to 6 inches below grade), rather than a common

convention of 0 to 2 feet (or similar) often utilized in risk assess-

ment. This may result in replicate samples over a depth profile to

meet data quality objectives, for example, very shallow samples to

evaluate potential background sources and deeper samples (or

longer composite depth intervals) to meet standard risk assess-

ment needs.

Our understanding of the wide distribution of PFAS in the en-

vironment and potential background sources is rapidly evolving.

What may be considered “background” has evolved from focusing

only on PFOA and PFOS to a wider range of compounds, including

transformative precursors (e.g., fluorotelomers). Analytical methods

are also evolving to include agency‐accepted methods for media

other than drinking water. Laboratory analyte lists continue to ex-

pand rapidly as standards become available for more PFAS, and new

preparation and analytical methods are developed for various pur-

poses (e.g., Total Organic Fluorine, Total Oxidizable Precursor Assay,

and nontargeted analysis). Analytical laboratory detection limits are

decreasing, and data validation methods are being developed. The

regulatory environment is also changing. PFAS standards in sediment,

surface water, and new standards for more PFAS are all on the

horizon. New regulatory limits and limits in additional media will

present new delineation and remedial challenges.

3 | RELEVANCE AND USE OF
“NONSELECTIVE” ANALYTES IN SITE
CHARACTERIZATION AND FATE AND
TRANSPORT EVALUATIONS

According to the 2020 USEPA Master List of substances, there are

over 9000 compounds that fit the generally accepted definition of

PFAS, and over 6300 have Chemical Abstract Service Numbers (U.S.
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Environmental Protection Agency, 2020). However, currently

approved analytical methods are only able to quantify a relatively

limited number of PFAS. Commercial laboratories are currently able

to quantify up to about 75 PFAS using targeted methods. The in-

ability to identify and quantify a large percentage of PFAS potentially

present in various environmental media is a substantial impediment

to accurate characterization of sites for potential PFAS impacts and

to evaluate the fate and transport of PFAS. With mounting public,

regulatory, and political pressure to investigate and address PFAS

contamination concurrently with calls to expand the list of regulated

PFAS, adopt a class‐based approach for regulation of PFAS, and

regulatory agencies considering cumulative PFAS criteria, it is logical

that responsible parties and practitioners consider employing stra-

tegies to evaluate more than just the relatively small list of targeted

PFAS reported by conventional analyzes at sites where it is unclear if

or what types of PFAS or PFAS‐bearing products were utilized or

discharged. Use of nonselective preparation and analytical methods

may be a component of those strategies. Nonselective methods

quantify a parameter that reflects the total amount or some specific

fraction of PFAS and other organofluorine compounds present in a

sample rather than quantify the concentration of a specific (or tar-

geted) PFAS. Use of nonselective methods can play an important role

in site investigations until analytical methods can quantify a larger

variety of targeted PFAS. These methods may also be useful for mass

balance evaluations and may provide relatively inexpensive and rapid

screening tools in PFAS investigations. However, it is also important

to note that these nonselective methods may create new challenges

in risk communication, especially when the site is in litigation and

before screening levels or formal criteria incorporating nonselective

analyzes are developed by regulatory agencies.

Examples of currently available nonselective preparation and

analytical methods outlined further below include total oxidizable

precursor (TOP) assay, total organic fluorine (TOF), and extractable

organic fluorine (EOF), and total fluorine methods such as particle‐

induced gamma ray emission (PIGE). The following paragraphs de-

scribe these methods and summarize their advantages and limitations

within the context of site characterization, risk assessment, and fate

and transport evaluations. When using one or more of these methods,

it is critical to understand what the resulting analytical data represent

(and do not represent) and as such, an upfront understanding of the

objectives for the additional analyzes is very important. It is also im-

portant to understand that none of the nonstandard methods have

standardized, regulatory agency‐approved methodologies; thus, each

laboratory may perform the method somewhat differently, which may

result in high inter‐laboratory variability and quality assurance issues.

3.1 | TOP assay

TheTOP assay is a sample preparation method developed to evaluate

the presence and concentrations of unidentified precursor com-

pounds of perfluoroalkyl carboxylic (PFCA) and sulfonic (PFSA) acids

in water samples (Houtz & Sedlak, 2012; Zhang et al., 2019). In the

TOP Assay a water sample is exposed to a strong oxidant (hydroxyl

radicals) generated by thermolysis of potassium persulfate under high

pH and elevated temperature conditions. Perfluoroalkyl acid (PFAA)

precursors are transformed during the oxidative treatment to PFCAs

of related perfluorinated chain length. Targeted PFAS are analyzed in

the water sample both before and after the oxidation procedure, and

the presence and relative concentration of total PFAA precursors are

inferred by comparison of PFCA concentrations before and after

oxidation. For example, a significantly higher PFCA concentration in

the oxidized sample relative to the untreated sample indicates the

presence of nontargeted precursor compounds in the sample, which

may transform in the environment into PFCAs because of remedia-

tion or natural attenuation mechanisms.

The TOP Assay provides a surrogate for the total concentration

of PFAS that are not quantified by current targeted analyzes. Unlike

the alternative analytical methods discussed below, this approach is

specific to measuring PFAS and PFAS precursor compounds before

and after oxidation. Currently, the TOP Assay is considered the most

selective of PFAS surrogate analytical methods (McDonough et al.,

2019). Since this preparation method can provide insight into con-

centrations of PFAS present in the sample that are not included in the

suite of targeted PFAS, the results can provide a better under-

standing of the potential impacts due to the presence of nontargeted

PFAS and precursor compounds. The TOP Assay can also help to

assess potential changes in PFCA concentrations because of oxida-

tive remediation methods and natural attenuation that can partially

transform PFAA precursors. The TOP Assay relies upon standard

PFAS analytical methods for quantification of targeted compounds,

and thus can achieve quantitation limits in the low part per trillion

range consistent with current regulations.

There are important limitations regarding use and interpretation

of TOP Assay results. The method is an intensive assay requiring

aggressive chemical oxidation procedures and analysis of duplicate

samples to quantify pre‐ and post‐oxidation PFAS concentrations. As

a result, the TOP Assay is labor intensive and typically has longer

turnaround times and higher cost. The results do not necessarily

provide a measure of “total” PFAS concentration because not all

PFAS are reactive and will be oxidized to PFAAs. A final factor for

consideration is that the strongly oxidative conditions utilized in the

TOP Assay may greatly exceed the capacity of natural processes

under typical environmental conditions to oxidize the precursor

PFAAs; thus, the TOP Assay has the potential to result in higher

PFAA concentrations than could be realized in the field.

3.2 | TOF and EOF

TOF and EOF analyzes measure the total concentration of different

fractions of organically‐bound fluorine (Miyake et al., 2007; Willach

et al., 2016). TOF is commonly measured by isolating organofluorine

compounds on activated carbon and then analyzing fluorine content

by combustion ion chromatography (CIC). This analysis is also com-

monly referred to as adsorbable organic fluorine (AOF), and includes
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all organofluorine compounds (including cationic, anionic, neutral, and

zwitterionic compounds) that can be adsorbed to activated carbon

(Willach et al., 2016). EOF is measured by solid phase extraction of

organic fluorine species dissolved in water to an anionic exchange

polymer, followed by elution and analysis of the extract by CIC to

determine fluorine content. EOF comprises only neutral and anionic

organofluorines (Willach et al., 2016) and thus is a fraction of TOF.

TOF and EOF methods utilize organic fluorine as a surrogate

for PFAS. The advantage of TOF and EOF is that they generally

provide a more rapid and lower cost screening tool to determine if

a significant concentration of fluorine‐bearing compounds is pre-

sent in a sample. However, unlike theTOP Assay, theTOF and EOF

methods are not specific to PFAS; other organofluorine com-

pounds (such as chlorofluorocarbons and certain pharmaceuticals

and pesticides) will also be quantified. It is also difficult to infer

PFAS concentrations fromTOF and EOF results because fluorine is

a variable fraction of the formula weight of individual PFAS, de-

pending upon chain length, alkyl group composition, and degree of

polyfluorination. Detection limits are also generally much higher

than TOP Assay and targeted methods; Willach et al. (2016) cite a

detection limit of 0.77 μg of fluorine per liter, which is equivalent

to a concentration of 13 μg per liter as PFOS (approximately four

orders of magnitude higher than common detection limits for in-

dividual PFAS in a targeted analysis). Thus, TOF and EOF results

are most effective as screening tools for relatively high con-

centration matrices such as at sites impacted by AFFF, rather than

at concentrations approaching typical regulatory levels.

3.3 | Particle‐induced gamma ray emission

PIGE is a nondestructive analytical method that measures emission of

a gamma ray wavelength specific to fluorine when the sample is

impacted with a proton ion beam (Ritter et al., 2017). The method can

measure total fluorine content on the surfaces of a variety of ma-

terials, such as paper, textiles, food packaging, and soil. The technique

can also be applied to water samples using solid phase extraction and

then analyzing the anion exchange polymer. PIGE is not specific to

PFAS and will quantify both organic and inorganic fluorine; and like

TOF and EOF, it is also difficult to infer PFAS concentrations from

PIGE results because fluorine is a variable fraction of the formula

weight of individual PFAS. Fluorine content in solids measured by

PIGE is commonly reported in units of nanomoles fluorine per square

centimeter (nmol F/cm2) of the material, and thus not directly com-

parable to units of measurement upon which regulatory and risk

assessment criteria are typically based (weight per volume [e.g., ng/L]

or weight per weight [ng/kg]). Reported detection limits range from

13 to 149 nmol F/cm2 for a variety of materials (Ritter et al., 2017).

PIGE analytical results for anion exchange polymers generated from

solid phase extraction of water samples can be transformed to report

the concentration in the extracted water sample on a weight per

volume unit based upon the volume of water extracted. Typical de-

tection limits for water samples are in the range of about 10 μg per

liter (similar to TOF and EOF analyzes), which are about four orders

of magnitude higher than common detection limits for targeted

PFAS analysis. This generally limits application of PIGE analyzes to

screening at sites potentially impacted with relatively high con-

centration matrices such as at sites impacted by AFFF, rather than at

concentrations approaching typical regulatory levels.

PIGE is different from the other nonselective analytes in that it

can measure surface‐bound fluorine rather than bulk sample con-

centrations, which may be relevant for certain types of assessments.

Recent technological advancements and research may result in a field

deployable PIGE system with detection limits potentially as low as

approximately 10 to 50 ng per liter (https://www.serdp-estcp.org/

Program-Areas/Environmental-Restoration/Risk-Assessment/ER19-

1142; retrieved November 24, 2021). This would allow application of

PIGE to greatly reduce site investigation timeframes and costs.

4 | SOIL RETENTION

Concentrations of PFAS found in vadose zone soil at contaminated

sites are generally orders of magnitude higher than in underlying

groundwater (Brusseau et al., 2020). This leads researchers to posit

the question: what is the long‐term migration potential to ground-

water and surface water? Improved understanding of the processes

and factors influencing PFAS retention in soil and the vadose zone is

relevant to fate and transport of PFAS in groundwater and ultimately

for risk assessment and remediation.

As surface active compounds, PFAS preferentially accumulate at

phase interfaces (e.g., the air‐water and nonaqueous phase liquid

[NAPL]‐water interfaces). The impact of air‐water interfacial adsorp-

tion on retention and transport of PFOS, PFOA, and GenX in un-

saturated porous media has been examined in miscible‐displacement

laboratory studies (Brusseau et al., 2021). Mathematical‐model simu-

lations of representative PFAS application scenarios have also illu-

strated the influence of air‐water interfacial adsorption on PFAS

retention and migration in the vadose zone (Guo et al., 2020; Silva

et al., 2020). In aggregate, these studies demonstrate that air‐water

interfacial adsorption can be a significant source of retention. The

magnitude and relative significance of such retention will depend upon

the specific PFAS, solution conditions, and soil properties.

Brusseau (2019) examined the propensity of 42 fluorinated

compounds (PFCAs, PFSAs, etc.) to adsorb at the air‐water interface

(as quantified by the interfacial adsorption coefficient, log Ki) and

found a strong, positive correlation (r2 of 0.94) between log Ki and

molar volume (which is a measure of molecular size and is related to

carbon chain length). This correlation demonstrates that the tendency

of these compounds to accumulate at the air‐water interface can be

predicted by quantifiable physico‐chemical parameters that represent

their relative hydrophobicity. Recent surface‐tension studies and

transport‐experiment investigations have examined the influence of

solution ionic strength and composition (Brusseau & Van Glubt, 2019;

Costanza et al., 2019; Silva et al., 2019), the presence of PFAS mixtures

(Brusseau & Van Glubt, 2019; Huang et al., 2022; Silva et al., 2021),
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and the presence of hydrocarbon surfactants (Ji et al., 2021) on

air‐water interfacial adsorption and retention of PFAS.

Sorption of PFAS by soil and sediment, that is, solid‐phase

sorption, is another generally significant retention process for both

the saturated and unsaturated zones. It is generally agreed that soil

organic matter (SOM) is the primary constituent that controls the

capacity and kinetics of PFAS sorption onto soils and sediment in

many cases, particularly for media with larger SOM contents (Higgins

& Luthy, 2006; Y. Li et al., 2018; F. Li et al., 2019; Sima & Jaffé, 2021;

Wei et al., 2017). However, it has been demonstrated that other soil

constituents such as metal oxides and clay minerals can also con-

tribute to PFAS sorption, particularly for shorter‐chain PFAS and soils

with lower SOM contents (Higgins & Luthy, 2006; Lyu et al., 2020;

Pereira et al., 2018; Wang et al., 2021). PFAS sorption has in some

cases been observed to be a function of pH, ionic strength, and the

degree of ionization of the PFAS. Although these observations and

correlations are generally universal, participants at PFAS Expert

Symposium 2 noted that PFAS are a large and diverse group of

compounds and that it is difficult to generalize about them as a group.

Although, as cited above, some generalizations can be drawn be-

tween various PFAS and specific properties, attributing these gen-

eralizations to all PFAS could in some cases result in significant errors.

All reference herein is specific to nonpolymeric PFAS.

The Symposium participants also noted that translation of

laboratory measured sorption parameters to field applications can

involve significant uncertainty. Sima and Jaffé (2021) noted that la-

boratory measured sorption isotherms in some cases may tend to

overestimate the reversibility of sorption and the potential for PFAS

migration resulting from desorption (Zareitalabad et al., 2013; Zhi &

Liu, 2018). They go on to note that studies of PFAS sorption kinetics

have found that hysteresis may increase with time for some systems,

making it difficult to predict the mobility of PFAS that have been

sorbed to soil for decades with short‐term laboratory sorption ex-

periments (Y. Li et al. 2018; F. Li et al., 2019; Miao et al., 2017; Pan

et al., 2009; You et al., 2010; Zhi & Liu, 2018).

Other factors in addition to solid‐phase sorption and air‐water

interfacial adsorption may significantly control transport of PFAS in

vadose zones and groundwater. It is well established that diffusive

mass transfer between lower and higher permeability domains (i.e.,

back diffusion) can have a significant role in solute transport and

plume attenuation/persistence in heterogeneous systems. Physical

heterogeneity and preferential‐flow phenomenon may be particularly

relevant for air‐water interfacial adsorption and migration of PFAS in

the vadose zone. While abiotically and biologically mediated trans-

formation of PFAS is not considered to be a significant factor in fate

and transport of PFAAs, they can be of great importance for select

PFAS precursors. Their presence and transformation to recalcitrant

PFAS can complicate assessments of transport and fate.

A few essential characteristics shared by some (but not all) PFAS

provide insight into their anticipated retention behavior, and into

what we may still need to measure to understand the ultimate fate

and transport of PFAS at contaminated sites. PFAS source (and site‐

specific chemical types), co‐contaminants, background electrolyte

concentration and composition, pH, soil organic carbon content

and composition, metal‐oxide content and composition, and clay

mineralogy can influence PFAS sorption, making prediction complex.

The complex chemistry of all PFAS includes compounds that

may transform (e.g., oxidizable precursors), may be present under

environmentally relevant conditions as zwitterions, cations, or anions,

and may also be present as both branched and linear isomers for a

given compound. Ultimately, possible electrostatic interactions with

charged surfaces within the soil matrix, the affinity for interfacial

accumulation, and the potential for nonlinear and hysteretic sorption

can result in far more complex behavior than what we have come to

expect for other organic contaminants. Moreover, saturated batch

extraction methods routinely used in regulatory practice to estimate

soil desorption potential are likely quite conservative primarily be-

cause any air‐water interfacial area collapses under saturation of

processed porous media. Site‐specific distribution coefficients (e.g.,

McGuire et al., 2014) may be appropriate in some cases. However,

given these complexities, the use of laboratory‐derived solid‐phase

sorption parameters for field‐scale modeling of PFAS migration

through the vadose zone to groundwater should be done with cau-

tion and the acknowledgment that considerable uncertainty may

exist for some applications.

The following recommendations were developed regarding re-

tention of PFAS by soil:

• A critical analysis of published distribution coefficients suggests

that due to the surfactant nature of some PFAS coupled with

known dual hydrophobic/hydrophilic “ends,” sorption coefficients

(e.g., Koc and/or Kd) for PFAS may be too oversimplified to broadly

employ for modeling fate and transport, although there are some

sites where sorption coefficients may be applicable with an ap-

propriate evaluation of uncertainty, such as in the saturated zone

within downgradient plumes.

• Focused studies are recommended for evaluating whether sorp-

tion coefficients are reliable tools or can be modified for broad

conceptual assessments, meanwhile, mining of large (and growing)

data sets for sites with detailed groundwater/soil concentration

data should continue.

5 | CONCLUSIONS

The PFAS Experts Symposium 2, held virtually from June 29 to July 1,

2021, brought together experts from a wide range of disciplines to

share their knowledge and current thought regarding PFAS in the

environment. The characterization, fate, and transport group identified

three key topics for which our understanding has evolved considerably

since the first PFAS Experts Symposium in 2019: the significance of

background PFAS sources to the environment, the relevance and use

of nonselective analyzes in site characterization, and PFAS retention in

soil and the vadose zone. PFAS have been identified in shallow soil

nearly worldwide, including far from known or suspected PFAS sour-

ces, and PFAS detected in soil and groundwater at sites under
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environmental investigation may not reflect on‐site sources. New ad-

vances in nonselective analytical methods offer promise for more rapid

site screening and to assess the presence and relative concentration of

nontargeted PFAS. We also now recognize that a wide range of soil

characteristics and processes may affect PFAS sorption and desorption

from soil, and ultimately influence PFAS concentration in groundwater

and surface water.
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