Rhode Island | | VAPOR INTRUSION SCREENING LEVELS (μg/m³) 1, 2, 3 | | | | |---------------------|--|--------------------------------|---------------------------|----------------------------------| | | Sub-Slab
Residential | Sub-Slab Industrial/Commercial | Indoor Air
Residential | Indoor Air Industrial/Commercial | | Benzene | 12 | 52 | 0.36 | 1.6 | | Tetrachloroethylene | 360 | 1,600 | 11 | 47 | | Trichloroethylene | 16 | 100 | 0.48 | 3.0 | | Vinyl Chloride | 5.6 | 93 | 0.17 | 2.8 | ## Notes: - 1. United States Environmental Protection Agency's (US EPA) Vapor Intrusion Screening Levels (VISLs) are noted in the table and can be found here. The term "Vapor Intrusion Screening Levels" or "VISLs" is used as a generic term for regulatory standards. - 2. The Rhode Island Department of Environmental Management (DEM) currently does not have vapor intrusion screening levels and defaults to the US EPA guidance. - 3. Site-specific evaluation or mitigation is required if the VISLs are exceeded. Refer to the DEM Environmental Protection Bureau Site Remediation Program located <a href="https://example.com/here-picture/learning-new-p