Rhode Island

	VAPOR INTRUSION SCREENING LEVELS (μg/m³) 1, 2, 3			
	Sub-Slab Residential	Sub-Slab Industrial/Commercial	Indoor Air Residential	Indoor Air Industrial/Commercial
Benzene	12	52	0.36	1.6
Tetrachloroethylene	360	1,600	11	47
Trichloroethylene	16	100	0.48	3.0
Vinyl Chloride	5.6	93	0.17	2.8

Notes:

- 1. United States Environmental Protection Agency's (US EPA) Vapor Intrusion Screening Levels (VISLs) are noted in the table and can be found here. The term "Vapor Intrusion Screening Levels" or "VISLs" is used as a generic term for regulatory standards.
- 2. The Rhode Island Department of Environmental Management (DEM) currently does not have vapor intrusion screening levels and defaults to the US EPA guidance.
- 3. Site-specific evaluation or mitigation is required if the VISLs are exceeded. Refer to the DEM Environmental Protection Bureau Site Remediation Program located <a href="https://example.com/here-picture/learning-new-p

